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Uranium compounds act as catalysts for many reactions
including the oxidation of organics,1 alkyne hydroamination,2

olefin hydrogenation,3 and olefin polymerization.4 In these
processes, U(IV) metallocene compounds often show reactivity
similar to lanthanide and group IV transition metal metallocenes
in such steps as olefin insertion and ligand protonation. In contrast
to the lanthanides and group IV metals, however, uranium can
also access the+6 oxidation state, giving rise to the possibility
of 2-electron (+4/+6) redox processes. We have recently reported
the synthesis of U(VI) complexes of the type (C5Me5)2U(dNR)2
(R ) Ph,1, R ) Ad ) 1-adamantyl,2);5,6 it has been postulated
that 5f orbitals play a significant role in stabilizing metal-ligand
bonding in these species. Any catalytic process requiring the
intermediacy of these higher valent complexes would also,
therefore, rely upon the involvement of f orbitals in mediating
chemical transformations.

We have previously reported that (C5Me5)2UCl2Na,7 produced
by treatment of (C5Me5)2UCl2 with sodium amalgam, reacts with
organic oxidants such as azobenzene and adamantyl azide to
produce U(VI) bis(imido) complexes1 and2 (eq 1).5b

These bis(imido) species are easily reduced to their corre-
sponding U(IV) bis(amide) analogues under an atmosphere of
hydrogen.5 By combination of these discrete steps, it is possible
to generate the first examples of well-defined catalytic two-
electron redox processes mediated by an f element.

When (C5Me5)2U(dNPh)2 and (C5Me5)2U(dNAd)2 are exposed
to an atmosphere of hydrogen, they are reduced to the corre-
sponding bis(amide) complexes (C5Me5)2U(NHR)2 (R ) Ph,3,8

Ad, 49) (eq 2). The reactions proceed cleanly to completion as
evidenced by1H NMR and comparison with independently
prepared samples of3 and4.10 The rate of hydrogenation of2 is
faster than that of1 (t1/2 for 2 ) 4 h, t1/2 for 1 ) 21 h).

When AdN3 is added to a solution of the bis(amide)4 and
benzene, the bis(imido)2 and AdNH2 are generated cleanly (eq
3).11 With evidence supporting the oxidation of4 to 2 by AdN3,

and the subsequent reduction of2 to 4 under an atmosphere of
H2, it may be anticipated that treatment of either2 or 4 with H2

and AdN3 would result in the catalytic hydrogenation of adamantyl
azide to adamantylamine. When4 is heated to 55°C in a Schlenk
tube with THF and AdN3 under an atmosphere of hydrogen,
catalytic hydrogenation of AdN3 to AdNH2 is observed (eq 4).12

The use ofN,N′-diphenylhydrazine as a potential oxidant was
also examined. Prior results have shown thatN,N′-diphenylhy-
drazine effectively oxidizes U(IV) to U(VI), converting (C5Me5)2-
UMe2 to 1.8 This reaction occurs formally by the protonation of
the methyl groups, liberating methane. Unlike transition metal
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(10) Compounds3 and 4 can both be synthesized from primary amines
and (η5-C5Me5)2UMe2. Compound3 has already been reported.8 Compound
4 was synthesized from (η5-C5Me5)2UMe2 and AdNH2. A vial in a helium-
filled drybox was charged with (η5-C5Me5)2UMe2 (0.258 g, 0.48 mmol),
AdNH2 (0.145 g, 0.96 mmol), and pentane (5 mL). The solution was stirred
for 24 h, during which time vigorous bubbling occurred and a tan precipitate
developed. The pentane was removed in vacuo, to yield4 (0.366 g, 0.45 mmol,
94%) as a tan powder.4: 1H NMR (250 MHz, C6D6) δ 2.53 (s, 30 H), 1.20
(s, 6 H),-0.02 (d,J ) 11.6 Hz, 6 H),-0.58 (d,J ) 11.8 Hz, 6 H),-5.29
(s, 12 H),-80.32 (s, 2 H).13C NMR (62.5 MHz, C6D6) δ 193.02, 79.13,
33.50, 32.81, 2.39,-38.44. IR (KBr, cm-1) 3651, 2905, 2847, 1451, 1438,
1356, 1346, 1311, 1302, 1261, 1119, 1094, 1020, 986, 943, 931, 902, 829,
803, 780, 725, 645, 627. Anal. Calcd for C40H62N2U: C, 59.39; H, 7.73; N,
3.46. Found: C, 59.08; H, 7.48; N, 3.40.

(11) An NMR tube in a helium-filled drybox was charged with4 (0.016 g,
0.020 mmol), AdN3 (0.004 g, 0.022 mmol), mesitylene (0.003 g, 0.020 mmol)
as an internal standard, and C6D6 (0.7 mL). The reaction was monitored by
NMR and found to be complete and quantitative after 3 h.
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group VI analogues which form stable tetravalentη2-hydrazide
complexes,13 the corresponding uranium (IV) hydrazido complex
is not isolated; the metal center is further oxidized to produce
the U(VI) bis(imido) complex1.

When (C5Me5)2U(dNPh)2 is treated with an excess ofN,N′-
diphenylhydrazine in the absence of hydrogen, the substrate is
entirely consumed, and aniline and azobenzene are observed to
form in a 2:1 ratio (eq 5).14 This disproportionation was

unexpected and indicated that theN,N′-diphenylhydrazine acted
upon the uranium complexes as both oxidant and reductant. The
formation of aniline during this reaction suggests that the U(IV)
bis(amide)3 should be present to reduce the hydrazine. The only
observed uranium species in solution throughout the reaction,
however, was (C5Me5)2U(dNPh)2; no buildup of the expected
reduction product (C5Me5)2U(NHPh)2 3 was detected by1H NMR.
If this reaction proceeds through a U(VI/IV) redox couple, the
absence of any detectable amount of U(IV) in solution during
the course of the reaction qualitatively indicates that the oxidation
from U(IV) to U(VI) is faster than the subsequent reduction.15

Thermodynamic considerations suggest this reaction is favored
both enthalpically and entropically. The calculated∆Hf of
converting two molecules ofN,N′-diphenylhydrazine to two
molecules of aniline and one molecule of azobenzene is-14.6

kcal/mol.16 Entropy considerations also qualitatively favor product
formation; two molecules of starting material are converted to
three molecules of product.

As an initial step to probe the mechanism of this transformation,
the catalytic activity of (C5Me5)2U(dNAd)2 2 was also exam-
ined.17 If the mechanism of catalysis proceeds via protonation of
the U(IV) bis(amide) byN,N′-diphenylhydrazine in a manner
similar to the reaction ofN,N′-diphenylhydrazine with (C5Me5)2-
UMe2,8 initial product formation would include adamantylamine
and azobenzene, with concomitant formation of (C5Me5)2U-
(dNPh)2. However, the only organic products are aniline and
azobenzene, and the only uranium species observed throughout
this reaction is the catalyst2. This indicates that the imido ligands
may serve as the sites for mediating H-atom transfer. To rule out
the possibility that compound1 is formed and undergoes
subsequent rapid reaction with 1-adamantanamine to regenerate
2, the stoichiometric reaction of1 with 1-adamantanamine was
examined. No reaction was observed at room temperature,
supporting the hypothesis that there is no rupture of the U-N
bond during catalysis.

These processes demonstrate a novel type of reactivity for
f-element complexes: catalytic transformations of substrates by
two-electron processes. The involvement of U(VI) species sug-
gests the requirement for f-orbital participation in metallocene-
mediated substrate cleavage reactions of this type.18 Future work
will focus upon elucidating mechanistic details and will include
an examination of other substrates that may serve as oxidants or
reductants.
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